f la fonction définie par $f(x) = x^2 - 2$ pour $1 \le x \le 2$ et C_f la courbe représentative de cette fonction.

L'équation f(x) = 0 a pour unique solution : $\alpha = \sqrt{2}$.

On veut comparer sur cet exemple la rapidité de deux méthode de calcul de valeurs approchées d'une solution d'une telle équation f(x) = 0

A. Dichotomie et méthode de Newton pour approcher une solution α de f(x) = 0

- * Principe de la méthode de dichotomie:
- on part d'un intervalle $[a_0; b_0]$ contenant α
- on construit deux suites (a_n) et (b_n) :

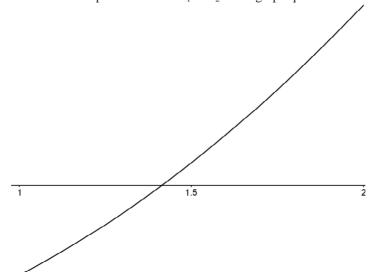
pour
$$n \ge 0$$
, si $f(a_n) \times f\left(\frac{a_n + b_n}{2}\right) < 0$ alors $a_{n+1} = a_n$ et $b_{n+1} = \frac{a_n + b_n}{2}$, sinon $a_{n+1} = \frac{a_n + b_n}{2}$ et $b_{n+1} = b_n$.

- * Principe de la méthode de Newton-Raphson :
- on part d'une première valeur approchées x_0
- On construit une suite (x_n) de la façon suivante:

pour $n \ge 0$, x_{n+1} est l'abscisse du point d'intersection de l'axe des abscisses et de la tangente à C_f en son point d'abscisse x_n .

1. Méthode de Newton-Raphson

a. Placer α et $x_0 = 2$ sur l'axe des abscisses puis construire x_1 et x_2 sur le graphique ci-dessous.



- b. Justifier que $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ puis que, pour la fonction f considérée ici, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$.
- c. Calculer x_1 et x_2 à la calculatrice

2. La dichotomie

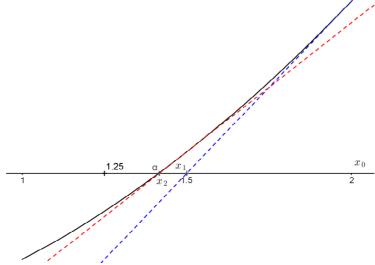
On a $a_0 = 1$, $b_0 = 2$

A l'aide du graphique, donner le signe de $f(a_0)$ et celui de $f\left(\frac{a_0+b_0}{2}\right)$. En déduire a_1 et b_1 .

Déterminer de même a_2 et b_2 .

1. Méthode de Newton-Raphson

a.



b. La tangente à C_f en son point d'abscisse x_n a pour équation $y = f'(x_n)(x - x_n) + f(x_n)$. Cette droite coupe l'axe des abscisse en un point d'abscisse x_{n+1} et d'ordonnée 0 donc $0 = f'(x_n)(x_{n+1} - x_n) + f(x_n)$ $f'(x_n)(x_{n+1} - x_n) = -f(x_n)$

Sur [1; 2],
$$f'(x) = 2x$$
 donc $f'(x) \neq 0$ donc $x_{n+1} - x_n = -\frac{f(x_n)}{f'(x_n)}$ donc $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

$$f(x) = x^2 - 2 \text{ et } f'(x) = 2 x \text{ donc } \frac{f(x_n)}{f'(x_n)} = \frac{x_n^2 - 2}{2 x_n} = \frac{x_n^2}{2 x_n} - \frac{2}{2 x_n} = \frac{1}{2} x_n - \frac{1}{x_n} \text{ donc } x_{n+1} = x_n - \left(\frac{1}{2} x_n - \frac{1}{x_n}\right) = x_n - \frac{1}{2} x_n + \frac{1}{x_n} = \frac{1}{2} x_n - \frac{1}{2} x_n + \frac{1}{2} x_n - \frac{1}{2$$

$$\frac{1}{2}x_n + \frac{1}{x_n}$$
 soit $x_{n+1} = \frac{1}{2}\left(x_n + \frac{2}{x_n}\right)$.

c.
$$x_1 = \frac{1}{2} \left(x_0 + \frac{2}{x_0} \right) = \frac{3}{2}$$
 et $x_2 = \frac{1}{2} \left(x_1 + \frac{2}{x_1} \right) = \frac{17}{12}$ donc $x_2 \approx 1,41667$

2. La dichotomie

 $a_0 = 1, b_0 = 2$

$$f(a_0) = -1, \frac{a_0 + b_0}{2} = 1,5 \text{ donc } f\left(\frac{a_0 + b_0}{2}\right) > 0$$

$$f(a_0) \times f\left(\frac{a_0 + b_0}{2}\right) < 0$$
 alors $a_1 = a_0$ et $b_1 = \frac{a_0 + b_0}{2}$ soit $a_1 = 1$ et $b_1 = 1,5$

$$f(1) < 0$$
 et $\frac{a_1 + b_1}{2} = 1,25$ donc $f\left(\frac{a_1 + b_1}{2}\right) < 0$

$$f(a_1) \times f\left(\frac{a_1 + b_1}{2}\right) > 0$$
 alors $a_2 = \frac{a_1 + b_1}{2}$ et $b_2 = b_1$ soit $a_2 = 1,25$ et $b_2 = 1,5$

/								
n	0	1	2	3	4	5	6	7
a_n	1	1	1,25	1,375	1,375	1,40625	1,40625	1,4140625
b_n	2	1,5	1,5	1,5	1,4375	1,4375	1,421875	1,421875
$\frac{a_n + b_n}{2}$	1,5	1,25	1,375	1,4375	1,40625	1,421875	1,4140625	1,41796875
$f(a_n)$	- 1	- 1	- 0,4375	- 0,1094	- 0,1094	- 0,0225	- 0,0225	- 0,0004
$f\left(\frac{a_n+b_n}{2}\right)$	0,25	- 0,4375	- 0,1094	0,0664	- 0,0225	0,0217	- 0,0004	0,0106
$f(a_n) \times f\left(\frac{a_n + b_n}{2}\right)$	négatif	positif	positif	négatif	positif	négatif	positif	négatif

Il faut 7 étapes pour trouver par dichotomie que $1,4140625 \le \sqrt{2} \le 1,421875$ alors qu'avec la méthode de Newton en deux étapes $\alpha \approx 1,41667$

Inconvénient : on n'a pas d'encadrement et il faut que la fonction soit dérivable à dérivée non nulle sur l'intervalle étudié.