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Semplicemente credetti di aver fatta un’importante scoperta 
scientifica. Mi credetti chiamanto a completare tutte la teoria dei 
colori fisiologici. I meiei predecessori, Goethe e Schopenhauer, 
non avevano mai immaginato dove si potesse arrivare 
maneggiando abilmente i colori complemantari.1 [p.417] (Svevo, 
1924) 

ABSTRACT 
 
The main goal of this research is to find a method to control 
complex harmony. In non tonal composition, the organisation of 
the harmonic material has not the clear orientation found in tonal 
music. The metaphorical isomorphism between timbre and 
harmony which forms the basis of spectral harmony suggests that 
timbre recognition and control of spectral harmony are the results 
of similar cognitive processes. 

 
 

1. INTRODUCTION 
 With musical instruments, timbre recognition is strongly linked to 
spectral coherence in the sense that, in a comfortable register, the 
spectral envelope of the steady-state part of the sound is not much 
altered whatever the note played, but is different from one 
instrument to another.  

 

In this paper, a method to control complex harmony, in particular 
spectral harmony, is presented. The notion of spectral coherence of 
musical instruments is put forward as an essential path in an 
itinerary linking elements of music, acoustics, psychoacoustics, 
computing, A.I., mathematics and philosophy. 

Self-organizing artificial neural networks are particularly efficient 
for pattern recognition and classification.  They were used to test 
the spectral coherence of 48 musical sounds from 14 instruments, 
mainly winds. 

One of the principal aim of the present research is to help 
composers, and also music analysts, in their understanding of the 
harmonic environment in which contemporary music is immersed. 

A stochastic modelling of sound spectra is proposed in order to 
enable comparing spectra of any given sounds regardless of their 
pitches. 
Finally, from a practical point of view, this paper will highlight 
methods to help composers who are concerned by the need to have 
a better control over complex harmonic texture. 

Some knowledge of measure theory are required in the 5th 
paragraph, in which is underlined the stochastic nature of sound. 
This approach was necessary to test the hypothesis of spectral 
coherence of musical instruments with Kohonen maps. 

 
 
 

   
  
 2. SPECTRAL HARMONY  
  
 Harmony is the science of the formation and organisation of 

chords2. Harmony is inducing time related order onto frequency 
related notes.  The major chord (ex: C-E-G) is the simplest of 

 
 
 

                                                  
1 I thought I had made an important scientific discovery. I suddenly felt 
called to complete the physiological theory of colour. My predecessors, 
Goethe and Schopenhauer, had never dreamed how far one might go 
simply by skilful arrangement of the complementary colours [p.387] (trans. 
d  Zoete B. 1930). 

 
 
 
 

e
2 in Françoise Guerard (ed.), Dictionnaire Hachette de la langue française, 
Hachette 1980, pp. 742. pt 
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chords.  It imitates the euphony of the single tone by omitting the 
more distant overtones and reinforcing the more immediate [p.26] 
(Schoenberg, 1911). 
 
Spectral chords are complex chords incorporating any overtones.  
They are not directly related to tempered scales. They are 
modelled on physical property of sound and, in particular, its 
spectrum.  Also called harmonic timbre,  it plays a role in 
identifying instrumental timbre, but only in association with other 
criterions, in particular, the dynamic criterion [p. 49] (Chion, 
1983)pt *. 
 
In Occident, musical instruments have been progressively made to 
produce a well defined pitch corresponding to the fundamental of 
an harmonic spectrum and made to emphasize the steady-part of 
the sound, stabilizing it with musical gestures such as bowing or 
blowing [pp.72-73] (Dufourt, 1999). 
 
This emphasis on the spectral timbre in musical instrument making 
and playing suggests that the organization of spectral chords could 
be modelled on sound perception and recognition of western 
musical instruments.  Analysing the spectra of sounds with 
computer has both led toward the creation of models for artificial 
synthesis of natural sources, for instance musical instruments and 
in recasting the interaction of timbre and harmonic function in 
instrumental composition [p.169] (Ferneyhough, 2000). This 
departure from the well-tempered system3 is not without 
difficulties. 
 
Helmholtz stressed that the simplicity of the well-tempered system 
has allowed Europeans to build playable sophisticated instruments 
and  that the great development of modern instrumental music was 
possible under the empire of the tempered system [p.422].  
Helmholtz also pointed out the similarity between sounds and 
chords [p.484] and that  the differences of musical timbres depend 
on the presence and intensity of partial sounds, but not their 
difference of phase [p.163]. (Helmholtz, 1863)pt 
 
Without linking explicitly spectrum and harmony, Pierre 
Schaeffer, founder in 1958 of the GRM4, put forward the 
importance in sounds of what he called an harmonic plane linked 
to the spectrum of sounds [p.207(fig.25) and pp.217-219] 
(Schaeffer et al., 1952).  By  the 1970s, the GRM and later Ircam5 

gave the possibility to L’Itinéraire (founded in 1973, ensemble of 
instrumentalists and composers such as Gérard Grisey, Tristan 
Murail, Michaël Levinas or Hugues Dufourt) to develop new 

musical ideas engaging instrumental compositions in new paths 
where electroacoustics could be included either in performance 
or/and during the compositional process.  
 
The  formalisation of this music practice led to the exposition of 
the principles of spectral music which illustrate the indissociable 
relation between music and technique, but which replaces also the 
contemporary creation in the framework of acoustic laws and of 
the history of knowledge expertise and of the necessary learning of 
this expertise  [p.154] (Levinas, 1999)pt.   Although the deduction 
from the spectrum of musical direction is the initial and most 
important input of spectral music other aspects of sound making 
are taken into account. Hugues Dufourt highlights 5 principles: 
1. The computer allows to compose sound and to compose at the 
infinitesimal scale of sound. 
2. The harmony mutates in timbre. 
3. The form and the material become one. 
4. The development of musical possibilities of synthesis and of 
digital processing of sounds is inseparable from research into the 
characteristics of hearing. 
5. A move from form to structure. 
[pp.181-186] (Dufourt, 1998) 
 
Regarding the second principle, Grisey added: 
- More ‘ecological’ approach to timbres, noises and intervals. 
- Integration of harmony and timbre within a single entity. 
- Integration of all sounds (from white noise to sinusoidal sounds). 
- Creation of new harmonic functions which include the notions of 
complementarity (acoustic, not chromatic) and hierarchies of 
complexity. 
- Re-establishment, within a broader context, of the ideas of 
consonance and dissonance as well as modulations. 
- Breaking out from tempered systems. 
- Establishing new scales and  over time  a melodic re-invention. 
[p.2] (Grisey 2000) 

 
 

3. SPECTRAL COHERENCE 
 
And, just as he [Schopenhauer] considers the colors physiological 
phenomena, ‘conditions, modification of the eye’ 6, so one would 
have to go back to the subject, to the sense of hearing, if one would 
establish a real theory of tones [p.18] (Schoenberg, 1911) 
 

                                                 

                                                

 
The spectrum of the steady-state part of  sound is not enough to 
characterise it fully, however it represents an important 
information on sound and can be used for musical purposes, as one 
of the precursors of spectral music, Jean-Claude Risset 
demonstrated it in his piece Mutations (1969):  

* pt stand for personal translation. 
3 or equal-tempered system.  
For more details on equal-tempered systems see, for example:  
Aline Honingh, Measures of Consonances in a Goodness-of-fit Model for 
Equal-tempered Scales, Proceedings ICMC 2003, Singapore. 

 4 Groupe de Recherches Musicales (Musical Research Group of Radio 
France). 

 5 Founded by Pierre Boulez in 1969, the Institut de Recherche et 
Coordination Acoustique/Musique (Acoustics/Music Coordination 
Research Institute ) was conceived originally as the music department of 
the Centre Georges Pompidou, Paris. 

6 in Arthur Schopenhauer, Sämtliche Werke: Schtirften zur Erkenntnislehre 
(Zweite Auflage; Wiesbaden: Eberhard Brockhaus Verlag, 1948),  p.21 [R. 
E. Carter’s note]. 

 2



“ An arpeggiated chord is echoed after 4 sec by a gong like sound 
that has components of the same frequencies as the fundamental 
chords. Although the gonglike sound is not heard as a chord, but 
rather as a timbre, one can hear clearly that this timbre is a 
prolongation, a shadow of the chord harmony. ” [p.20]  (Risset, 
1991). 

Are we going towards the realization of a new treatise of 
orchestration which would classify the timbres and ranges 
according to their spectrum, of their formants and of their 
transients and no longer according to their making? 
It is hoped that the computer might quickly provide a modelization 
of the instrumental spectra that will be easier to compare and 
organise into hierarchies.”   
[p.373] (Grisey, 1991)pt The spectrum is not only a useful tool for analysing sounds in the 

laboratory, but is also a good representation of how the cochlea 
processes sound to send auditory images to the brain. Steve 
McAdams stressed that  the initial mapping of the frequency 
spectrum into the auditory system via the basilar membrane 
roughly corresponds to a logarithmic scale…  This spatial 
organization of the frequency domain in the auditory system is 
maintained (to some extent) as far as primary auditory cortex 
[p.284]. McAdams has also put forward the importance of spectral 
fusion (particularly in the case of harmonic sounds) and of the 
spectral envelope for learning and recognition [pp.285-286]. 
(McAdams, 1982) 

 
Spectral coherence can be tracked by analysing the similarities in 
the pattern of spectra of various instrumental sounds. Artificial 
neural networks are particularly efficient to test similarities.  

 
 

4. KOHONEN MAPS AND MUSIC 
 
Amongst artificial neural networks, self-organised Kohonen 
networks induce topologically ordered computational maps with 
strong stochastic properties.  The many kinds of maps or images of 
sensory experiences in the brain, in particular tonotopic 
projections in the primary sensory areas are one of the main 
neurobiological inspirations of Kohonen maps [p.59](Kohonen, 
1982). 

 
Concerning sounds from musical instruments, Levinas has stressed 
the importance of a more systematic classification of families of 
instruments that could be ordered in terms of spectral coherence 
[p.15].  Indeed, this points out the need to control the spectral 
material to operate what Levinas called “hybridising” different 
families of acoustical attacks or ways of acting on the sound-
producing body [p.13]. (Levinas, 1994).  

 
After initialisation, the elaboration of a SOM (self-organised map) 
follows 3 processes: competition, cooperation, and synaptic 
adaptation. In the competition process a topology is featured which 
is defined by the Euclidian distance.  A distance calculus is 
operated when synaptic weights are adjusted to find the best 
matching neurone for a given input value.  Then, based on 
neurobiological evidence for lateral interaction, the cooperative 
process imposes a Gaussian convergent condition in order to limit 
the influence of a neuron on its surroundings.  Lastly, the adaptive 
process, in two stages, ordering and convergence, allows for 
synaptic weights to be readjusted when a new input data is 
presented.  An Hebbian process with the learning rate as a feature 
is introduced and a forgetting term is added such that, overall, 
adjacent neurons have similar synaptic weight vectors and that, 
after fine tuning, an accurate statistical quantification of the input 
space is provided.  After initialisation, the 3 main steps of the 
SOM algorithm can be seen as equivalent to sampling, similarity 
matching and updating. [pp.443-483] (Haykin 1999) 

 
Spectral music techniques are quite explicit, for example see 
(Baillet, 2000) for an overview of Grisey’s techniques, and the 
main method to control harmony is the interpolation of timbral 
structures [p.93] (Saariaho, 1987). But this method make possible 
to classify chords only in very specific contexts. The metaphorical 
isomorphism between timbre and harmony implies that a better 
knowledge of music instrument classification according to their 
spectral properties would allow to extend the domain of 
classification of spectral harmony. A first step in our study was 
therefore to find a way to classify instruments as sound objects and 
not for their visual features. Grisey already pointed out the need 
for a perceptual organisation of the instruments of the orchestra: 
 
“Between the  A played on one violin and an A on another violin, 
there is a small difference: that of the quality of the instrument and 
of the instrumentalist. This is the minimum degree of change that 
we can hope for in an instrumental ensemble.  
We can compare thus the same musical line on all the instruments 
of the orchestra and establish a more or less arbitrary graduation. 
For example, the same A on a cello will be closer to the violin than 
an A on a flute, which would be much more similar to the violin 
than another A on the Tuba, and so on. 

Recent researches linking Kohonen maps and music, and in 
particular timbre, are presented by Toiviainen in his paper 
Symbolic AI versus connectionism in music research (Toiviainen, 
2000).  Since the late 1980s, Marc Leman has conducted several 
studies exploring harmonic structures using Kohonen maps.  
Leman with Carreiras and Lesaffre (Carreiras et al. 1999) have 
presented new methods for the description of harmonic context 
based on chord decomposition in terms of sub-chords. This 
research gives good grounds to believe that Kohonen maps are an 
efficient tool to pursue an investigation of spectral harmony. 

An attentive listening of this kind resists the traditional 
classification in wind, strings etc..: for example, the low D of a 
piccolo will be certainly more similar to a contrabass harmonic on 
the same note than the same D played by a clarinet, a sound of 
mute trumpet closer to a woodwind than a French horn, etc.. And 
what can be said about the transients of attack and  ways of 
playing such as the ponticello of strings and the mutes which 
change so radically the instrumental spectrum? 

From a practical stance, the difficulty with Kohonen networks is to 
find the best vector representative of the object tested. In the case 
of the spectrum of the steady-part of musical instrument sounds 
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(periodic tones), it seemed, at first, that the coordinates of the 
vectors should be the values of the amplitude of each partial of the 
corresponding spectrum.  However, this implied that only sounds 
of the same pitch or of harmonically related pitches could be 
implemented. 7   Here it is assumed that a periodic complex tone 
has a pitch corresponding to the fundamental frequency [p.3486] 
(Hartman, 1996), although the influence of timbre on pitch 
[pp.675-676] (Terhardt et al. 1982) should be taken into 
consideration in the following when analysing resulting Kohonen 
maps.  

 

5.1 Spectrum and linear operator 
 
In spectral music, the spectrum is considered as a representation 
(frequency, amplitude) of the Fourier transform of a sound signal. 
In maths, the spectrum of a linear operator is the set of its 
eigenvalues. Each eigenvalues is associated to one or several 
eigenvectors defining a linear space associated to the linear 
operator. If we think of a sound S in term of linear operator, we 
may write: 

 
In order to test the spectral coherence of musical instruments, the 
spectra of the sounds8 of the 39 musical instruments (woodwind, 
brass and strings) analysed by Gregory Sandell  [Sharc database]9 
(Sandell, 1994) were used.  Only sounds with fundamental pitched 
at F#3, F#4, C#5, F#5, C#6, F#6, C#7, F#7 were chosen.   The 
result obtained on a Kohonen map shows effectively a grouping of 
sounds according to their pitch with the exception of the C trumpet 
muted.  The 4 sounds of the C trumpet muted including the lowest 
note of the trumpet register (F#3) and one of the highest notes of 
its register (F#5) were clustered showing strong spectral 
coherence. 

 (1)  ))(()()],([
1

tftatfS
N

n
nn∑

=

= ψψ

 
where an is the amplitude of the nth partial of frequency fn,  
and ψ  is a given function ( wave function, usually sine or cos). 
A characteristic of harmonic sounds is that the frequencies of the 
partials of the spectrum are ordered and multiple of the suite {1, 2, 
3, …, N}.  
N is linked with perception. 

  
One characteristic of the spectrum of the notes of the C trumpet 
muted, and this at least in the 2 octaves above F#3, is that the 
fundamental is not the maximal amplitude.  Depending on the 
pitch, the partial with the maximal amplitude can be the 5th or 
even the 7th.  Thus the spectral envelope of the C trumpet muted 
depends little on the pitch, at least this is what can be concluded 
from this first experiment with Kohonen map.  To avoid issues 
with pitch and to obtain for all sounds a similar result as obtained 
with the C trumpet muted, a reconsideration of the traditional 
(frequency, amplitude) approach to sounds was necessary.   

For example:  
 

HzNffNk kk 20000)(, 1 <×−<∀ +
10 

and 
 

0)1(, fCtekfkfNk ==−+<∀ 11 

 
The fn are the frequencies of partials of sounds related to the 
fundamental of frequency fo (often coinciding with the pitch of that 
sound) and :  
  

))(()()],([
1

tftatfS
N

n
nn∑

=

= ψψ  5. STOCHASTIC MODEL OF SOUND 
 

 The following model of sound is restricted to harmonic sounds that 
is sounds with a temporal soundwave presenting a periodicity, 
however it is hoped that a generalisation to any type of sounds will 
be possible out of this model. 

The spectral characteristic of a sound is mainly determined by the 
couple (amplitude, frequency) of each partial or by the function s 
such that: 
 

                                                 )())((     )2( tatfs nn =  7 Most psycho-acoustic experiments on timbre differentiation suppose that 
the pitch of the sounds tested are the same; however in the following paper 
three tones [B3 (247 Hz), C#4 (277 Hz) and Bb4 (466 Hz)] were used :  

 
In the following, the temporal increment t will not be considered, 
although its importance is not denied. Jeremy Marozeau, Alain de Cheveigné, Stephen McAdams and Suzanne 

Winsberg, The dependency of timbre on fundemental frequency, JASA 
114-5, 2003 pp.2946-2957. 

 
 

8 source sounds: McGill University Master Samples (MUMS) 
http://www.music.mcgill.ca/resources/mums/html/index.htm  
(site accessed 25/04/2004). 

                                                 9 Restricted access for http://www.parmly.luc.edu/sharc/. 
10 20,000 Hz is the upper limit in frequency for the human perception of 
tone (Brian C.J. Moore, An Introduction to the Psychology of Hearing, 
Academic Press, 2nd edition, 1982, p. 43). 

Data from Sandell Harmonic Archive (SHARC) on the web: 
http://people.cs.uchicago.edu/~odonnell/Scholar/Data/SHARC/  
(site accessed 25/04/2004) 

11 True only for harmonic sounds.  
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5.2 Inverse image of a function and Dirac’s 
measure 

 

 

∫ −∂=⊂∀
20000

0
)( )()()(,0    1 dfffA],a[A AsMax ψµ

∫ ∫ −∂=⇒
Maxa

As dadfffaS
0

20000

0
)( )()(          (5)      1ψ

  
Some mathematical notions need to be recalled at this point: 
 

})(  ],20000,0[{)(],,0[ 1 AfsthatsuchfAsaA Max ∈∈=⊂∀ −

 
where aMax  is the maximal amplitude (perceptual threshold).  
 N

sµµ =   is finite (  ), it therefore can 
be considered associated to a probability measure: 

]),0([ Max
N
s

N
s ab µ=

The function ∂  is defined as followed, for any A ⊂ [ 0, aA Max] : 
  

Aa if  0  A,a if  1)(],,0[ ∉∈=∂∈∀ aaa AMax  
)(1)(],,0[ A

b
APaA N

sN
s

N
sMax µ=⊂∀  

 
Thus, for f ∈[0, 20000]:  
 Ps is the probability that partials for any frequencies take their 

amplitude values in a set A of amplitudes.   1)(
})({1 =∂ − f

as
  if s(f)∈{a} that is if s(f )= a, 

 
  

0)(
})({1 =∂ − f

as
  if s(f)∉{a} that is if s(f )≠ a, 

5.4 Bands of amplitudes  
 
For a given set of amplitudes (or band of amplitudes) corresponds 
an associated set of frequencies. 5.3 Measure associated to the spectrum 

  
The amplitude a linked to a partial of frequency f , takes its 
value in [0, aMax]. The values of a are not necessarily discrete, 
which could be implied in writing: 

If K is the number of bands then: 
1

1
0

[0, ] [ , ]
K

Max k k
k

a a
−

a +
=

=U  

)( 0
1

nfaS
N

n
nψ∑

=

=  Thus a representation of S for a chosen K is given by: 
 

 
])([         )6(

1

0

1

∑ ∫
−

=

+

=
K

k

a

a

adaS
k

k

µ  with   a0 = 0, aK = aMax   Thus it may be more accurate, with respect to both amplitude and 
frequency values, to write S as follows: 
 

 

daffaS
Maxa

n

N

n
asn ])()([           (3)

0 1
})({1∫ ∑

=
−∂= ψ  

5.5 Partials and bands of amplitudes 
  
A set of frequencies (or partials) can be associated to a given 
amplitude band such that  

This puts forward the measure µ defined on the set of amplitudes, 
depending on N, linked with the function s, and therefore the 
sound S and such that:  

 ( )(]))(([       )7
)(1 fAfsQ

Ass −∂=∈ .   

∑
=

−∂==⊂∀
N

n
nAsn

N
s ffAA

1
)(Max )()()()(],a[0,A   (4) 1ψµµ

 

 
If for p ∈{1,…, N} and 1]])1,[)(([ =+∈ kkpfssQ αα  , then: 

 },...,1{,{]),([ 1
1 Npfs kpkk k

∈=+
− αα   It is easy to check that µ is a finite measure. µ is finite because the 

number of partials in an harmonic sound is finite. This model 
could be generalised to non-harmonic sound, although in some 
cases it might not be trivial to show that µ is finite: 

 
where [ ]1, +kk αα  is a band of amplitude, thus: 

},...,1{,{]),[(]),0([
1

0

1

0
1

11 Npfsas k

K

k
p

K

kkMax k
∈==

−

=

−

=
+

−− UU αα  
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It seems that the number of partials but also their actual frequency 
in a band of amplitude represent an important factor in the spectral 
characterisation of the timbre of an harmonic sound. The actual 
importance of the harmonic structure is not crucial in the final 
results suggesting that this model of representation of harmonic 
sounds could be generalised to any sounds 

 

 

5.6 Examples 
  
In the Sharc database, the amplitude of the partial are proportional 
to the maximum amplitude which is given the value 0 dB. In this 
example, partials with amplitude value inferior to –70dB are not 
considered. 12 

 
Figure 1: Spectrum of  Trumpet in C playing a C#5  

Thus aMax = 0 dB and instead of [0, aMax] ,  the amplitude range is 
written: 

[from SHARC database] 
Exact values in dB for partials 7 to 12:  
-19.9345, -20.632, -26.1757, -25.8422, -31.8845, -30.26280     

] ]
] ]dBdBA

dBdBA

0,70
0,70

−=
−⊂
U    

 
 

 
If  we choose K = 7 and A such that the length of all A 
corresponds to 10dB and that together they form a partition of      
[-70dB, 0dB], then we have: 

5.6.2 Trumpet in C (muted) 
 
In the case of the trumpet in C (muted) (fig.2), the 12th partial 
[6625.44Hz or Ab9] has the maximum amplitude. 

  
 ] ] ] ]U

7

1

)1(10,100,70
=

−−=−
k

dBkkdBdBdB For k=3 (as an example), only the 5th partials is in the amplitude 
band ]–30dB, -20dB]. 
This can be written:  
 Let’s now consider the note C#5 (or Db5), it corresponds to the 

production of a sound on an instrument such that its fundamental 
is = 554.37 Hz and that its spectrum has 18 harmonic partials 
below 10,000 Hz.

0f
13  

1−s (]-30, -20]) ={5 }= {2771.85Hz}. 0f
 
 
  

 

 
5.6.1 Trumpet in C 
 
In the case of the trumpet in C (fig.1), the 2nd partial [1108.74Hz 
or C#6] has the maximum amplitude.  
 
For k=3 (as an example), the 8th , 9th and 10th partials are in the 
amplitude band ]–30dB, -20dB]. 
This can be written: 
 

1−s (]-30, -20]) ={8 , 9 , 10 }= {4435 Hz, 4908.933Hz, 
5543.7Hz }. 

0f 0f 0f

                                                 
 12 They have usually very little signification due partly to perceptual 

threshold and partly to accuracy in the measurement of sound.  Figure 2: Spectrum of  Trumpet in C (muted) playing a C#5  
[from SHARC database] See for example: 

Keith Dana Martin, Sound-Source Recognition: A Theory and 
Computational Model, PhD thesis, MIT 1999. (particularly pp. 90-92). Exact values in dB for partials 2 to 10:  

-19.81690, -14.26650, -15.17010, -20.80340, -7.54688, -14.59810,  
13 In the SHARC database, all the note’s harmonic are in the range  -38.87510, -3.35428, -19.34910    

 0-10 kHz (Sandell, 1994). 
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These two examples are an illustration that the spectrum can be 
represented by a suite of frequencies related to band of amplitudes 
instead of a suite of amplitudes associated to the partials arranged 
according to increasing values of frequencies. 

 

 

 
 

6. SPECTRAL HARMONY  
AND KOHONEN MAP 

 
The pseudo-inversion process described mathematically can be 
computerised and may be useful for other data than the spectrum 
of the steady state of harmonic sounds. However our goal is to 
investigate how AI can be useful for music composition and, in 
particular, how AI can help to manage complex harmony, in 
particular, spectral harmony.   
 Figure 3: Kohonen map of musical instruments Kohonen maps are thought to be "able to preserve the topological 
relations while performing a dimensionality reduction of the 
representation space" [p.82] (Kohonen, 1997).  The space of 
frequencies is the representation space thus the hypothesis of the 
spectral coherence of musical instruments can be checked. 48 
sounds corresponding to 14 instruments were chosen: alto flute 
(3), bass flute (14), Eb clarinet (4), Bb clarinet (5), bass clarinet 
(1), bassoon (1), C trumpet (5), Bach trumpet (5), C trumpet muted 
(4), alto trombone (2), contrabass (1), contrabass martelé (1), 
contrabass muted (1), contrabass pizzicato (1). The spectra of these 
48 sounds have between 8 and 56 partials.  

 
1 : silence ; 2, 3, 4 : alto flute [F#4, C#5, F#5]; 5, 6 : alto trombone [F#4, 
C#5]; 7 -11 : Bach trumpet [F#4, C#5, F#5, C#6, F#6]; 12 –14 : bass flute 
[F#3, F#4, C#5]; 15 –19 : Bb clarinet [F#3, C#4, F#4, C#5, F#5];  
20 : bass clarinet [F#3]; 21 : bassoon [F#3]; 22-25 : contrabass [F#3] 
(normal, martelé, mute, pizzicato); 26 –30: C trumpet [F#3, F#4, C#5, F#5, 
C#6]; 31 –34 : C trumpet muted [F#3, F#4, C#5, F#5]; 35 –38 : Eb clarinet 
[F#4, C#5, F#5, C#6]; 39 –49 : bass flute [C3, C#3, D3, D#3, E3, F3, G3, 
G#3, A3, A#3, B3] 
NOTE: This Kohonen map was obtained after the sound vectors were 
‘amplitude low pass filtered’(k>4). C trumpet muted sounds have very few 
low energy partials, hence they cluster with silence on this map. 

 
 For the first experiments using the pseudo inversion, the 

dimension of the space of frequencies was 35. The space was 
partition into 7 regions corresponding to 7 bands (see 5.6):  

 
 

7. MUSICAL APPLICATION  
     For each k in {1, 2, 3, 4, 5, 6, 7}, card (s-1(]-10kdB, 10(k-1)dB]) = 5. 

  
Even as a child I was fascinated by the idea opened up by Goethe 
in his Theory of Colors14 (1810), which places the birth of colors 
within the confines of light and shade. The tensions created by 
transitional spaces fascinated me most of all as parameters with 
which it was possible to create musical forms. [p.97] (Saariaho, 
1987) 

 If in a band, the number of frequencies was inferior to 5, the 
remaining coordinates were given the value 0. If in a band, the 
number of frequencies was superior to 5, the frequencies most 
relevant according to psychoacoustics were kept, for instance the 
local maxima of the spectral envelop (also known as formants). 
[pp.286-288 & pp.308-311] (McAdams, 1994)  

   
Ligeti's piece Atmosphères (1961) is a model of how to transpose 
electro-acoustic music technique to the orchestra. It shows that 
harmonic concepts developped in electro-acoustic music can be 
transposed in acoustic music although it requires new writing 
techniques [pp.198-206]. Ligeti advocates the use of computer for 
composition and believes that A.I. can help in understanding the 
influence of a cultural constellation on compositions but he does 
not believe important the automation of the composition process 
[p.196 ]. (Ligeti, 1981)  

The sound vectors were then inputted in the Kohonen networks 
and a resulting Kohonen map was obtained. On the map (fig.3), we 
can see that the bass flute sounds form a separate region from 
trumpet and clarinet. Some sounds tend still to cluster according to 
pitch, for example trumpet and clarinet for C#5. However, at that 
pitch and during the steady-state portion a confusion of the 2 
instruments is possible. Overall, the results are convincing enough 
to be exploited in spectral harmony, however improvements could 
be made, in particular through psychoacoustics tests. 

  
 

                                                 
14 J. W. von Goethe, Scientific Studies, D. E. Miller, ed. and trans., 
Suhrkamp, New York (1988) 
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Using artificial neural networks, Bharucha and Todd have 
highlighted the failure of rule-based model of music to account for 
the acquisition of the rules they postulates [p.46]. Indeed they 
were able to put forward that a net trained on the Western major 
and minor scales seems to assimilate some Indian ragas to the 
western scales, sometimes shifting the tonic [p. 47] (Bharucha et 
al., 1989). However the use of Kohonen maps to control harmony 
using the spectral coherence paradigm has the potential to help the 
composers to organise the harmonic material of their composition 
as long as they are aware in which context they compose. 

 

  
 A method used to control the harmony of Interstice (Maintenant, 

2002)  was to consider that each sound vector (see paragraph 6),  
represents a local harmonic field. According to what Bregman 
calls sequential integration (Bregman, 1990)15,  to move from one 
point to another, on the Kohonen map, is metaphorically 
isomorphic to modulate to corresponding remote or not remote 
harmonic field, depending on the move.  

Figure 4: Extract of Interstice for bass flute and electric guitar19 
[Development 3A, p. 2]  
 (both written in treble clef sounding an octave lower)  
The first group of notes [E5 to D6]  correspond to the bands of amplitudes 
]-50dB, -40dB] and ]-60dB, -50dB] of a F#5 of an Alto Flute.  
The second group of notes [C#3 to D#5] correspond to the local maximum 
(possible formant) of the bands ]-10dB, 0], ]-20dB, -10dB], ]-30dB, -20dB], 
]-40dB, -30dB], ]-50dB, -40dB] of a C#5 of a trumpet in C   

Interstice was composed during summer 2002 as a commission for 
Camilla Hoitenga with some funding from the Bliss trust/PRS 
foundation. It is a 21 mn music theatre piece in 3 parts (the 
duration of part 2 may vary) for a flautist and a guitarist:  

[the 3rd note is a F4: 10th partials (see 5.6.1 fig.1) 4 octaves below 20] 
 
 
 

1. bass flute solo (with tape at the end)    
2. music theatre (involving domestic objects)    
3. duo bass flute - electric guitar. (fig.4&5)  
  
It was inspired by Les Immatériaux 16 (extract, fig.5), a poem by 
Michel Houellebecq (Houellebecq, 1997). The second part is 
influenced by Kagel's concept of music theatre (Kagel, 1970). The 
first and third parts are written according to the classical process of 
theme and variations. However all the harmonic material is 
spectral, and its frequential organization relies upon readings of 
Kohonen maps. Each of the 48 sound vectors provide an harmonic 
field and the harmony evolves according to paths in the Kohonen 
maps.  

 
 

 

 
Interstice was premiered the 3 April 2003 at the Alte Feuerwache 
in Cologne, by Camilla Hoitenga17 (bass flute) and Wilhelm 
Bruch18 (electric guitar), theatre direction by  Franz-Josef 
Heumannskämper. It can be argued that many parameters have 
contributed to the success of the premiere but one thing is certain: 
most of the harmonic material was drawn from information 
derived from the spectrum of sounds of musical instruments, and 
organised with the help of Kohonen maps. 

 
Figure 5: Extract of Interstice for bass flute and electric guitar 
[Development 3 Coda, p. 4]  The first group of notes [G#2 to D4]  corresponds to the band of 
amplitudes ]-10dB, 0] of a C#5 of a trumpet in C (muted)                                                  
[the first 2 notes correspond to partials 6 and 9 (see 5.6.2 fig.2)  15 particularly chap 2 pp. 47 – 211.  5 octaves below] 

Note that Ligety calls ‘fusion’ a similar notion whilst refering to Koening’s 
experiments in electronic music, in 1957 [pp. 181-188] (Ligeti, 1981).  

 16 Also the name given to an event/exhibition curated by Jean-François 
Lyotard and Thierry Chaput (Centre Georges Pompidou, Paris 28/03 – 
15/07/1985) 

 

                                                 
17 Camilla Hoitenga has collaborated with and performed pieces written 
for her by composers such as Karlheinz Stockhausen or Kaija Saariaho 

19 Bass flute and electric guitar are both written in trebble clef sounding an 
octave below. 

18 Wilhelm Bruck has worked extensively with Mauricio Kagel, also with 
Helmut Lacheman and Giacinto Scelsi. 

20 By transposing the spectrum, the spectral envelop is not preserved. 
However the goal, here, is not to synthesize sounds but to establish new 
ways to control spectral harmony for composition purpose.  
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